Ćwiczenie – Konfiguracja i weryfikacja ograniczeń dostępu na liniach VTY

Topologia

Tabela adresów

Urządzenie	Interfejs	Adres IP	Maska podsieci	Brama domyślna
R1	G0/0	192.168.0.1	255.255.255.0	N/A
	G0/1	192.168.1.1	255.255.255.0	N/A
S1	VLAN 1	192.168.1.2	255.255.255.0	192.168.1.1
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1
PC-B	NIC	192.168.0.3	255.255.255.0	192.168.0.1

Cele nauczania

Część 1: Podstawowa konfiguracja urządzeń

Część 2: Konfiguracja list kontroli dostępu na routerze R1

Część 3: Weryfikacja list kontroli dostępu przy użyciu protokołu Telnet

Część 4: Wyzwanie – Konfiguracja list kontroli dostępu na przełączniku S1

Wprowadzenie

Dobrą praktyką jest ograniczanie dostępu do interfejsów, przez które możliwe jest zarządzanie routerem np. port konsolowy czy linie vty. Listy kontroli dostępu mogą być użyte do zezwolenia na ruch z konkretnych adresów IP, zapewniając, że tylko administrator ma dostęp do routera poprzez Telnet lub SSH.

Uwaga: W urządzeniach Cisco nazwy list ACL są skrócone do list dostępu.

Na tym laboratorium utworzysz i zastosujesz nazywane listy ACL w celu ograniczenia zdalnego dostępu do routera poprzez linie vty.

Po utworzeniu list ACL przetestujesz je i zweryfikujesz poprzez dostęp do routera przy użyciu protokołu Telnet z różnych adresów IP.

W tym laboratorium poznasz komendy niezbędne do utworzenia i zastosowania list ACL.

Uwaga: Preferowane routery to model Cisco 1941 Integrated Services Router (ISR) z systemem Cisco IOS Release 15.2(4)M3 (universalk9 image), natomiast przełączniki to model Cisco Catalyst 2960s z systemem Cisco IOS Release 15.0(2) (lanbasek9 image). Inne urządzenia i systemy mogą być również używane. W zależności od modelu i wersji IOS dostępne komendy mogą się różnić od prezentowanych w instrukcji

Uwaga: Upewnij się, że routery i przełączniku zostały wyczyszczone i nie posiadają konfiguracji startowej. Jeśli nie jesteś pewny/a wezwij instruktora.

Wymagane zasoby

- 1 router (Cisco 1941 z systemem Cisco IOS Release 15.2(4)M3 universal image lub kompatybilnym)
- 1 przełącznik (Cisco 2960 with Cisco IOS Release 15.0(2) lanbasek9 image lub kompatybilnym)
- 2 komputery (Windows 7, Vista, lub XP z programem Putty lub innym programem terminalowym)
- Kabel konsolowy do konfiguracji urządzeń Cisco przez port konsolowy
- Kable sieciowe i serialowe pokazane na rysunku topologii

Uwaga: Na interfejsach gigabitowych routerów Cisco 1941 włączone jest autowykrywanie, dlatego też kabel prosty może być użyty do połączenia komputera z routerem. W przypadku innego routera może być konieczne użycie kabla z przeplotem.

Część 1: Podstawowa konfiguracja urządzeń

W części 1 zbudujesz sieć zgodnie z topologią i skonfigurujesz adresy IP na interfejsach, zdalny dostęp a także hasła.

- Krok 1: Budowa sieci zgodnie z topologią.
- Krok 2: Konfiguracja interfejsów sieciowych komputerów PC-A i PC-B zgodnie z tabelą adresów.

Krok 3: Inicjalizacja i ponowne uruchomienie routera i przełącznika.

- a. Wyłącz niepożądane zapytania DNS (DNS lookup).
- b. Skonfiguruj nazwy urządzeń zgodnie z topologią.
- c. Ustaw class jako hasło do trybu uprzywilejowanego EXEC.
- d. Ustaw cisco jako hasło do połączeń konsolowych i wymuś logowanie.
- e. Ustaw **cisco** jako hasło do połączeń wirtualnych w celu uruchomienia dostępu przez Telnet i wymuś logowanie.
- f. Włącz szyfrowanie haseł.
- g. Ustaw baner MODT ostrzegający przed nieautoryzowanym dostępem.
- h. Skonfiguruj adresy IP na interfejsach zgodnie z tabelą adresacji.
- i. Ustaw bramę domyślną na przełączniku.
- j. Zapisz bieżącą konfigurację urządzeń jako startową.

Część 2: Konfiguracja list kontroli dostępu na routerze R1

W części 2 skonfigurujesz standardową nazywaną listę ACL I zastosujesz ją do linii vty routera w celu ograniczenia zdalnego dostępu do routera.

Krok 1: Konfiguracja standardowej nazywanej listy ACL.

- a. Zestaw połączenie konsolowe do routera R1 i wejdź do trybu uprzywilejowanego.
- b. W trybie globalnej konfiguracji wyświetl opcje komendy **ip access-list** wpisując znak zapytania po spacji

```
R1(config)# ip access-list ?
extended Extended Access List
helper Access List acts on helper-address
log-update Control access list log updates
logging Control access list logging
resequence Resequence Access List
```

standard Standard Access List

c. Wyświetl opcje komendy ip access-list standard wpisując znak zapytania po spacji.

```
R1(config)# ip access-list standard ?
```

<1-99> Standard IP access-list number <1300-1999> Standard IP access-list number (expanded range) WORD Access-list name

d. Dodaj **ADMIN-MGT** na końcu komendy **ip access-list standard** i naciśnij Enter. Jesteś teraz w trybie konfiguracji standardowej nazywanej listy dostępu (config-std-nacl).

```
R1(config)# ip access-list standard ADMIN-MGT
```

R1(config-std-nacl)#

Wejdź do trybu zezwoleń lub zakazów listy kontroli dostępu ACE (access control entry) zwanym również oświadczeniem listy ACL. Pamiętaj, że na końcu listy znajduje się wpis **denny any,** który efektywnie blokuje cały ruch. Wpisz znak zapytania w celu wyświetlenia opcji komendy.

```
R1 (config-std-nacl) # ?

Standard Access List configuration commands:

<1-2147483647> Sequence Number

default Set a command to its defaults

deny Specify packets to reject

exit Exit from access-list configuration mode

no Negate a command or set its defaults

permit Specify packets to forward

remark Access list entry comment
```

Utwórz wpis zezwalający na ruch od administratora PC-A (192.168.1.3) i dodatkowy wpis zezwalający na dostęp z adresów od 192.168.1.4 do 192.168.1.7. Zauważ, że pierwszy wpis dotyczy pojedynczego adresu poprzez użycie wpisu **host**. Zamiast tego można użyć komendy **permit 192.168.1.3 0.0.0.** Drugi wpis zezwala na ruch z adresów 192.168.1.4 do 192.168.1.7 poprzez użycie maski blankietowej 0.0.0.3, która jest odwróceniem maski sieciowej 255.255.255.252.

```
R1(config-std-nacl) # permit host 192.168.1.3
R1(config-std-nacl) # permit 192.168.1.4 0.0.0.3
R1(config-std-nacl) # exit
```

Nie ma potrzeby konfigurowania indywidulanych blokad, ponieważ na końcu listy znajduje się wpis **deny any**.

e. Przypisz utworzoną listę ACL do linii vty.

```
R1(config)# line vty 0 15
R1(config-line)# access-class ADMIN-MGT in
R1(config-line)# exit
```

Część 3: Weryfikacja list kontroli dostępu przy użyciu protokołu Telnet

W części 3 użyjesz protokołu Telnet w celu zdalnego dostępu i weryfikacji, że utworzona lista działa poprawnie.

- a. **Uwaga**: SSH jest bezpieczniejszy od Telnetu; jednakże SSH wymaga aby urządzenia sieciowe były odpowiednio skonfigurowane. Na tym laboratorium Telnet używany jest dla wygody.
- Otwórz wiersz poleceń na komputerze PC-A i sprawdź czy możliwa jest komunikacja z routerem przy użyciu polecenia ping.

```
C:\Users\user1> ping 192.168.1.1
```

Pinging 192.168.1.1 with 32 bytes of data: Reply from 192.168.1.1: bytes=32 time=5ms TTL=64 Reply from 192.168.1.1: bytes=32 time=1ms TTL=64

```
Reply from 192.168.1.1: bytes=32 time=1ms TTL=64
Reply from 192.168.1.1: bytes=32 time=1ms TTL=64
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 5ms, Average = 2ms
C:\Users\user1>
```

c. Z komputera PC-A połącz się do routera R1 przy użyciu protokołu Telnet. Wejdź do trybu uprzywilejowanego po wpisaniu hasła. Po poprawnym zalogowaniu zobaczysz baner powitalny i znak zachęty routera.

```
C:\Users\user1> telnet 192.168.1.1
```

Unauthorized access is prohibited!

User Access Verification

Password: R1>enable Password: R1#

Czy udało się połączyć z routerem?

- d. Wpisz exit i naciśnij Enter w celu zamknięcia połączenia Telnet.
- e. Zmień adres IP komputera na 192.168.1.100 w celu sprawdzenia czy lista ACL blokuje ruch z nieuprawnionych adresów IP.
- f. Połącz się do routera przez Telnet jeszcze raz. Czy połączenie zakończyło się sukcesem?

Jaki komunikat się pojawił?

g. Zmień adres IP komputera PC-A na jeden z zakresu od 192.168.1.4 do 192.168.1.7 w celu sprawdzenia czy lista ACL zezwala na ruch z ustawionego zakresu IP. Po zmianie adresu połącz się ponownie do routera przy użyciu protokołu Telnet.

Czy połączenie zakończyło się sukcesem?

h. W trybie uprzywilejowanym routera R1 użyj komendy **show ip access-lists** i naciśnij Enter. Zauważ jak system IOS pokazuje liczbę poprawnych powiązań do danego wpisu ACE (w nawiasie).

R1# **show ip access-lists** Standard IP access list ADMIN-MGT

10 permit 192.168.1.3 (2 matches)

20 permit 192.168.1.4, wildcard bits 0.0.0.3 (2 matches)

Ze względu na dwa połączenia Telnet do routera, każde z adresu IP pasującego do jednego wpisu ACE, istnieją połączenia pasujące do obydwu wpisów ACE.

Dlaczego do każdego wpisu ACE są dwa powiązania skoro wykonane zostało tylko po jednym połączeniu z każdego adresu IP?

W jaki sposób można określić, w którym momencie protokół Telnet powoduje dwa powiązania podczas jednego połączenia Telnet?

- i. Na routerze R1 wejdź do trybu globalnej konfiguracji.
- j. Wejdź do trybu konfiguracji list dostępu ADMIN-MGT i dodaj wpis deny any na końcu listy.

```
R1(config)# ip access-list standard ADMIN-MGT
R1(config-std-nacl)# deny any
R1(config-std-nacl)# exit
```

Uwaga: Ze względu na niejawny wpis **deny any** na końcu każdej listy nie ma potrzeby dodawania wyraźnego wpisu **deny any**. Jednakże wpis ten może być przydatny administratorowi w celu sprawdzenia ile razy wykonano połączenia, które zostały zablokowane.

- k. Połącz się z komputera PC-B do R1 przy użyciu protokołu Telnet. Spowoduje to powstanie powiązania do wpisu **deny any** na liści kontroli dostępu.
- I. W trybie uprzywilejowanym użyj komendy **show ip access-lists i** naciśnij Enter. Powinny być teraz widoczne powiązania do wpisu **deny any**.

```
R1# show ip access-lists
```

```
Standard IP access list ADMIN-MGT
```

```
10 permit 192.168.1.3 (2 matches)
20 permit 192.168.1.4, wildcard bits 0.0.0.3 (2 matches)
30 deny any (3 matches)
```

Połączenia Telnet zakończone niepowodzeniem, powodują więcej powiązań do wpisu deny any, niż połączenia zakończone sukcesem. Dlaczego?

Część 4: Wyzwanie – Konfiguracja list kontroli dostępu na przełączniku S1

Krok 1: Konfiguracja standardowej nazywanej listy ACL dla linii vty przełącznika S1.

- a. Bez odnoszenia się do konfiguracji routera R1 spróbuj skonfigurować listę ACL na przełączniku, zezwalającą na dostęp tylko z komputera PC-A.
- Przypisz listę ACL do linii vty przełącznika S1. Pamiętaj, że na przełączniku jest więcej linii vty niż na routerze.

Krok 2: Weryfikacja list ACL na liniach vty przełącznika S1.

Połącz się do przełącznika przy użyciu protokołu Telnet z każdego z komputerów w celu sprawdzenia czy listy ACL działają poprawnie. Powinieneś połączyć się tylko z komputera PC-A, z komputera PC-B nie.

Do przemyślenia

1. Jak wynika z tego ćwiczenia listy ACL są bardzo potężnymi filtrami ruchu, które mogą być stosowane nie tylko na wejściowych i wyjściowych interfejsach. Gdzie jeszcze można użyć list ACL?

- 2. Czy listy ACL zastosowane na liniach vty zwiększają bezpieczeństwo protokołu Telnet? Czy czyni to protokół Telnet lepszym narzędziem do zdalnego dostępu?
- 3. Dlaczego ustawia się listy ACL na liniach vty zamiast na konkretnych interfejsach?

Tabela interfejsów routera

Interfejsy routera						
Model routera	Interfejs Ethernet #1	Interfejs Ethernet #2	Interfejs Serial #1	Interfejs Serial #2		
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)		
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		

Uwaga: Aby dowiedzieć się jak router jest skonfigurowany należy spojrzeć na jego interfejsy i zidentyfikować typ urządzenia oraz liczbę jego interfejsów. Nie ma możliwości wypisania wszystkich kombinacji i konfiguracji dla wszystkich routerów. Powyższa tabela zawiera identyfikatory dla możliwych kombinacji interfejsów szeregowych i ethernetowych w urządzeniu. Tabela nie uwzględnia żadnych innych rodzajów interfejsów, pomimo że podane urządzenia mogą takie posiadać np. interfejs ISDN BRI. Opis w nawiasie (przy nazwie interfejsu) to dopuszczalny w systemie IOS akronim, który można użyć przy wpisywaniu komend.